Author:
Meier Adam M.,Eastin Bryan,Knill Emanuel
Abstract
The distillation of magic states is an often-cited technique for enabling universal quantum computing once the error probability for a special subset of gates has been made negligible by other means. We present a routine for magic-state distillation that reduces the required overhead for a range of parameters of practical interest. Each iteration of the routine uses a four-qubit error-detecting code to distill the $+1$ eigenstate of the Hadamard gate at a cost of ten input states per two improved output states. Use of this routine in combination with the $15$-to-$1$ distillation routine described by Bravyi and Kitaev allows for further improvements in overhead.
Subject
Computational Theory and Mathematics,General Physics and Astronomy,Mathematical Physics,Nuclear and High Energy Physics,Statistical and Nonlinear Physics,Theoretical Computer Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献