Quantum predictive learning and communication complexity with single input

Author:

Gavinsky Dmitry

Abstract

We define a new model of quantum learning that we call \e{Predictive Quantum (\pq)}. This is a quantum analogue of \pac, where during the testing phase the student is only required to answer a polynomial number of testing queries. We demonstrate a relational concept class that is \e{efficiently learnable} in \pq, while in \e{any} ``reasonable'' classical model exponential amount of training data would be required. This is the first unconditional separation between quantum and classical learning. We show that our separation is the best possible in several ways; in particular, there is no analogous result for a functional class, as well as for several weaker versions of quantum learning. In order to demonstrate tightness of our separation we consider a special case of one-way communication that we call \e{single-input mode}, where Bob receives no input. Somewhat surprisingly, this setting becomes nontrivial when relational communication tasks are considered. In particular, any problem with two-sided input can be transformed into a single-input relational problem of equal \e{classical} one-way cost. We show that the situation is different in the \e{quantum} case, where the same transformation can make the communication complexity exponentially larger. This happens if and only if the original problem has exponential gap between quantum and classical one-way communication costs. We believe that these auxiliary results might be of independent interest.

Publisher

Rinton Press

Subject

Computational Theory and Mathematics,General Physics and Astronomy,Mathematical Physics,Nuclear and High Energy Physics,Statistical and Nonlinear Physics,Theoretical Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Learning quantum finite automata with queries;Mathematical Structures in Computer Science;2023-11-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3