The complexity of stoquastic local Hamiltonian problems

Author:

Bravyi S.,DiVincenzo D.P.,Oliveira R.,Terhal B.M.

Abstract

We study the complexity of the Local Hamiltonian Problem (denoted as LH-MIN) in the special case when a Hamiltonian obeys the condition that all off-diagonal matrix elements in the standard basis are real and non-positive. We will call such Hamiltonians, which are common in the natural world, stoquastic. An equivalent characterization of stoquastic Hamiltonians is that they have an entry-wise non-negative Gibbs density matrix for any temperature. We prove that LH-MIN for stoquastic Hamiltonians belongs to the complexity class \AM{}--- a probabilistic version of \NP{} with two rounds of communication between the prover and the verifier. We also show that $2$-local stoquastic LH-MIN is hard for the class \MA. With the additional promise of having a polynomial spectral gap, we show that stoquastic LH-MIN belongs to the class \POSTBPP=\BPPpath --- a generalization of \BPP{} in which a post-selective readout is allowed. This last result also shows that any problem solved by adiabatic quantum computation using stoquastic Hamiltonians is in PostBPP.

Publisher

Rinton Press

Subject

Computational Theory and Mathematics,General Physics and Astronomy,Mathematical Physics,Nuclear and High Energy Physics,Statistical and Nonlinear Physics,Theoretical Computer Science

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A distribution testing oracle separation between QMA and QCMA;Quantum;2024-06-17

2. Topological phases in the dynamics of the simple exclusion process;Physical Review E;2024-03-11

3. Measurement-Altered Ising Quantum Criticality;Physical Review X;2023-12-05

4. Quantum Many-Body Systems in Thermal Equilibrium;PRX Quantum;2023-11-30

5. Single-Qubit Cross Platform Comparison of Quantum Computing Hardware;2023 IEEE International Conference on Quantum Computing and Engineering (QCE);2023-09-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3