How a Clebsch-Gordan transform helps to solve the Heisenberg hidden subgroup problem
-
Published:2008-05
Issue:5
Volume:8
Page:438-487
-
ISSN:1533-7146
-
Container-title:Quantum Information and Computation
-
language:
-
Short-container-title:QIC
Abstract
It has recently been shown that quantum computers can efficiently solve the Heisenberg hidden subgroup problem, a problem whose classical query complexity is exponential. This quantum algorithm was discovered within the framework of using pretty good measurements for obtaining optimal measurements in the hidden subgroup problem. Here we show how to solve the Heisenberg hidden subgroup problem using arguments based instead on the symmetry of certain hidden subgroup states. The symmetry we consider leads naturally to a unitary transform known as the Clebsch-Gordan transform over the Heisenberg group. This gives a new representation theoretic explanation for the pretty good measurement derived algorithm for efficiently solving the Heisenberg hidden subgroup problem and provides evidence that Clebsch-Gordan transforms over finite groups are a new primitive in quantum algorithm design.
Subject
Computational Theory and Mathematics,General Physics and Astronomy,Mathematical Physics,Nuclear and High Energy Physics,Statistical and Nonlinear Physics,Theoretical Computer Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献