Author:
Wocjan P.,Janzing D.,Beth T.
Abstract
We consider a quantum computer consisting of n spins with an arbitrary but fixed pair-interaction Hamiltonian and describe how to simulate other pair-interactions by interspersing the natural time evolution with fast local transformations. Calculating the minimal time overhead of such a simulation leads to a convex optimization problem. Lower and upper bounds on the minimal time overhead are derived in terms of chromatic indices of interaction graphs and spectral majorization criteria. These results classify Hamiltonians with respect to their computational power. For a specific Hamiltonian, namely \sigma_z\otimes\sigma_z-interactions between all spins, the optimization is mathematically equivalent to a separability problem of n-qubit density matrices. We compare the complexity defined by such a quantum computer with the usual gate complexity.
Subject
Computational Theory and Mathematics,General Physics and Astronomy,Mathematical Physics,Nuclear and High Energy Physics,Statistical and Nonlinear Physics,Theoretical Computer Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献