Author:
Markov Igor L.,Saeedi Mehdi
Abstract
Reversible circuits for modular multiplication $Cx\%M$ with $x<M$ arise as components of modular exponentiation in Shor's quantum number-factoring algorithm. However, existing generic constructions focus on asymptotic gate count and circuit depth rather than actual values, producing fairly large circuits not optimized for specific $C$ and $M$ values. In this work, we develop such optimizations in a bottom-up fashion, starting with most convenient $C$ values. When zero-initialized ancilla registers are available, we reduce the search for compact circuits to a shortest-path problem. Some of our modular-multiplication circuits are asymptotically smaller than previous constructions, but worst-case bounds and average sizes remain $\Theta(n^2)$. In the context of modular exponentiation, we offer several constant-factor improvements, as well as an improvement by a constant additive term that is significant for few-qubit circuits arising in ongoing laboratory experiments with Shor's algorithm.
Subject
Computational Theory and Mathematics,General Physics and Astronomy,Mathematical Physics,Nuclear and High Energy Physics,Statistical and Nonlinear Physics,Theoretical Computer Science
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献