Author:
Omkar S.,Srikanth R.,Banerjee Subhashish,Alok Ashutosh Kumar
Abstract
We make use of the tools of quantum information theory to shed light on the Unruh effect. A modal qubit appears as if subjected to quantum noise that degrades quantum information, as observed in the accelerated reference frame. The Unruh effect experienced by a mode of a free Dirac field, as seen by a relativistically accelerated observer, is treated as a noise channel, which we term the Unruh channel. We characterize this channel by providing its operator-sum representation, and study various facets of quantum correlations, such as, Bell inequality violations, entanglement, teleportation and measurement-induced decoherence under the effect. We compare and contrast this channel from conventional noise due to environmental decoherence. We show that the Unruh effect produces an amplitude-damping-like channel, associated with zero temperature, even though the Unruh effect is associated with a non-zero temperature. Asymptotically, the Bloch sphere subjected to the channel does not converge to a point, as would be expected by fluctuation-dissipation arguments, but contracts by a finite factor. We construct for the Unruh effect the inverse channel, a non-completely-positive map, that formally reverses the effect, and offer some physical interpretation.
Subject
Computational Theory and Mathematics,General Physics and Astronomy,Mathematical Physics,Nuclear and High Energy Physics,Statistical and Nonlinear Physics,Theoretical Computer Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献