Author:
Ahmadi A.,Belk R.,Tamon C.,Wendler C.
Abstract
Classical random walks on well-behaved graphs are rapidly mixing towards the uniform distribution. Moore and Russell showed that the continuous-time quantum walk on the hypercube is instantaneously uniform mixing. We show that the continuous-time quantum walks on other well-behaved graphs do not exhibit this uniform mixing. We prove that the only graphs amongst balanced complete multipartite graphs that have the instantaneous exactly uniform mixing property are the complete graphs on two, three and four vertices, and the cycle graph on four vertices. Our proof exploits the circulant structure of these graphs. Furthermore, we conjecture that most complete cycles and Cayley graphs of the symmetric group lack this mixing property as well.
Subject
Computational Theory and Mathematics,General Physics and Astronomy,Mathematical Physics,Nuclear and High Energy Physics,Statistical and Nonlinear Physics,Theoretical Computer Science
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献