m-adic residue codes over F_q[v]/(v^s-v) and their applications to quantum codes

Author:

Kuruz Ferhat,Sari Mustafa,Koroglu Mehmet E.

Abstract

Due to their rich algebraic structure, cyclic codes have a great deal of significance amongst linear codes. Duadic codes are the generalization of the quadratic residue codes, a special case of cyclic codes. The $m$-adic residue codes are the generalization of the duadic codes. The aim of this paper is to study the structure of the $m$-adic residue codes over the quotient ring $\frac{{{\mathbb{F}_q}\left[ v \right]}}{{\left\langle {{v^s} - v} \right\rangle }}$. We determine the idempotent generators of the $m$-adic residue codes over $\frac{{{\mathbb{F}_q}\left[ v \right]}}{{\left\langle {{v^s} - v} \right\rangle }}$. We obtain some parameters of optimal $m$-adic residue codes over $\frac{{{\mathbb{F}_q}\left[ v \right]}}{{\left\langle {{v^s} - v} \right\rangle }}$ with respect to Griesmer bound for rings. Furthermore, we derive a condition for $m$-adic residue codes over $\frac{{{\mathbb{F}_q}\left[ v \right]}}{{\left\langle {{v^s} - v} \right\rangle }}$ to contain their dual. By making use of a preserving-orthogonality Gray map, we construct a family of quantum error correcting codes from the Gray images of dual-containing $m$-adic residue codes over $\frac{{{\mathbb{F}_q}\left[ v \right]}}{{\left\langle {{v^s} - v} \right\rangle }}$ and give some examples to illustrate our findings.

Publisher

Rinton Press

Subject

Computational Theory and Mathematics,General Physics and Astronomy,Mathematical Physics,Nuclear and High Energy Physics,Statistical and Nonlinear Physics,Theoretical Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3