Comparative performance of multiple linear regression and artificial neural network models in estimating solute-transport parameters

Author:

Mojid Mohammad AbdulORCID,Hossain A.B.M. Zahid

Abstract

Indirect estimate of solute-transport parameters through pedo-transfer functions (PTFs) is becoming important due to expensive and time-consuming direct measurement of the parameters for a large number of soils and solutes. This study evaluated the relative performance of PTFs of multiple linear regression (MLR) and Artificial Neural Network (ANN) models in predicting velocity (<em>V</em>), dispersion coefficient (<em>D</em>) and retardation factor (<em>R</em>) of CaCl<sub>2</sub>, NaAsO<sub>2</sub>, Cd(NO<sub>3</sub>)<sub>2</sub>, Pb(NO<sub>3</sub>)<sub>2</sub> and C<sub>9</sub>H<sub>9</sub>N<sub>3</sub>O<sub>2</sub> (carbendazim) in five agricultural soils. <em>V</em>, <em>D</em> and <em>R</em> of the solutes were determined in repacked soil columns under steady-state unsaturated water flow conditions. Textural class, particle size distribution, bulk density, organic carbon, relative pH, clay%, grain size, and uniformity coefficient of the soils were determined. MLR and ANN models were calibrated with the measured data of four soils and verified for another soil. Root-Mean Square Error (RMSE) is significantly smaller (0.015) and modelling efficiency (EF) is significantly larger (0.999) for ANN model than those (0.096 and 0.954, respectively) for MLR model. Negative Mean Absolute Error (MAE) (-0.0002) of MLR model indicates overestimation, while positive MAE (0.00003) of ANN model indicates minimal underestimation. The ANN model is less biased than the MLR model during prediction. Thus, the ANN model can significantly enhance pollution transport prediction through soils with good accuracy.

Publisher

Universitas Sebelas Maret

Subject

Atmospheric Science,Pollution,Soil Science,Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3