Affiliation:
1. Department of Mechanical and Aerospace Engineering, University of California, Davis, CA
Abstract
This paper investigates the acoustics of a one-passenger and a six-passenger quadrotor urban air mobility (UAM) aircraft in level flight based on a high-fidelity computational fluid dynamics (CFD) approach. The CFD simulations are carried out using the HPCMP CREATETM-AV multidisciplinary
rotorcraft analysis and simulation tool Helios. The acoustic simulations are performed using the acoustic prediction tool PSU-WOPWOP. A total of three CFD models are simulated: a onepassenger isolated rotor configuration, a one-passenger full configuration with a fuselage, and a six-passenger
isolated rotor configuration. The noise comparison between the one-passenger isolated rotor case and the full configuration case shows that the vehicle fuselage increases the A-weighted sound pressure level (SPL) up to 5 dB. The acoustic comparison between the one-passenger and the six-passenger
isolated rotor configuration shows that the maximum overall SPL difference is up to 14 dB. Furthermore, it is shown that the noise of the six-passenger configuration is approximately 11 dB lower than that of a similar-sized conventional helicopter in an overhead scenario. The community noise
impact of UAM aircraft is also assessed and compared to various background noise levels. The results show that the one-passenger quadrotor noise can be fully masked by freeway noise at an altitude greater than or equal to 1000 ft, while the six-passenger quadrotor noise can only be partially
masked by freeway noise even at an altitude of 1000 ft.
Publisher
AHS International dba Vertical Flight Society
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献