Helicopter Performance Improvement with Variable Rotor Radius and RPM

Author:

Mistry Mihir,Gandhi Farhan

Abstract

This paper examines rotor power reductions achievable through a combination of radius and RPM variation. The study is based on a utility helicopter similar to the UH-60A and considers +17% to –16% variation in radius and ±11% variation in RPM about the baseline, over a range of airspeed, gross weight, and altitude. Results show that decreasing RPM alone effectively reduced power at cruise velocities in low-and-light conditions, but the power reductions diminished at increasing altitude and/or gross weight, and in low-speed flight. Increasing radius alone, on the other hand, had greatest effectiveness in power reduction in high-and-heavy operating conditions and at lower flight speeds. When radius and RPM variation is used in combination, minimum RPM is always favored, along with radius increases at increasing altitude and gross weight, and in low-speed operation. At low-to-moderate gross weight, the significant power reductions seen in cruise and at low altitude with RPM variation alone are obtained even at higher altitude, and over the airspeed range, using radius and RPM variation in combination. In high-and-heavy conditions, the combination of RPM reduction and radius increase yields very large power reductions of over 20% and up to 30% over the baseline. Power reduction in low-and-light conditions comes almost entirely from profile power reduction due to RPM decrease. In cruise and high-speed flight, the profile power reductions progressively give way to induced power reductions at increasing gross weight and altitude. At low speeds, reduction in induced power due to increased radius and decreased disk loading dominates.

Publisher

American Helicopter Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3