Author:
Krott Matthew J.,Smith Edward C.,Rahn Christopher D.
Abstract
This paper covers the modeling and testing of a helicopter tailboom integrated with a fluidic flexible matrix composite (F2MC) damped vibration absorber. In an advance over previous work, the F2MC absorber presented in this paper treats a combination of tailboom
lateral, torsional, and vertical vibrations. A finite element structural model of a laboratory-scale tailboom is combined with a model of attached F2MC tubes and a tuned fluidic circuit. Vibration reductions of over 75% in a coupled 26.8-Hz lateral bending/torsion tailboom mode
are predicted by the model and measured experimentally. These results demonstrate that F2MC vibration control is viable at higher frequencies and for more complex vibration modes than previous research had explored. A new absorber with a fluidic circuit that targets two tailboom
vibration modes is designed and experimentally tested. On the lab-scale tailboom testbed, the absorber with this circuit is shown to provide vibration reductions of over 60% in both a 12.2-Hz vertical mode and a 26.8-Hz lateral bending/torsion mode. Using this new absorber, vertical and lateral/torsion
mode damping are achieved with almost no added weight relative to a purely vertical absorber.
Publisher
American Helicopter Society
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献