ACT/FHS System Identification Including Rotor and Engine Dynamics

Author:

Seher-Weiß Susanne

Abstract

At the German Aerospace Center (DLR) Institute of Flight Systems, models of the Active Control Technology/Flying Helicopter Simulator (ACT/FHS), an EC135 with a fly-by-wire/light flight control system, are needed for control law development and simulation. Thus, models are sought that cover the whole flight envelope and are valid over a broad range of frequencies. Furthermore, if the models are to be used in the feedforward loop of the model following the control system, they have to be invertible and thus should not have any positive transmission zeros. For rotor flapping, the explicit formulation with flapping angles was modified slightly to avoid positive transmission zeros. For the regressive lead–lag, a simple model formulation was found that needs only one dipole with two states. The engine dynamics were first modeled separately and then coupled to the body/rotor model. The final integrated model has 17 states and yields a good match for frequencies up to 30 rad/s. All system identification was performed using the maximum likelihood method in the frequency domain.

Publisher

American Helicopter Society

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3