System Identification Guidance for Multirotor Aircraft: Dynamic Scaling and Test Techniques

Author:

Ivler Christina M.,Rowe Elizabeth S.,Martin James,Lopez Mark J.S.,Tischler Mark B.

Abstract

State-space system identification was performed to extract flight dynamic models for hovering flight of a 55 cm, 1.56 kg hexacopter unmanned aerial vehicle. Different input excitation techniques were tested to determine which maneuvers provided high-quality system identification results for small-scale multirotor vehicles. These input excitation techniques included automated frequency sweeps, varying in amplitude, and multisine sweeps. Coherence, Cramer–Rao bounds, and insensitivities were used as metrics for comparing the system identification results. A parametric variation of frequency sweep amplitudes were performed in all axes (roll, yaw, pitch, and heave) to provide guidance on frequency sweep amplitude for small-scale multirotor unmanned aerial systems. The dynamics of the 55 cm hexacopter were used to estimate the dynamics of a larger 127-cm hexacopter via Froude scaling based on hub-to-hub distance as the characteristic length. The scaled results were compared to an actual system identification model of a 127-cm hexacopter.

Publisher

American Helicopter Society

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3