Hydrogen Fuel Cell and Battery Hybrid Architecture for Range Extension of Electric VTOL (eVTOL) Aircraft

Author:

Ng Wanyi,Patil Mrinalgouda,Datta Anubhav

Abstract

The objective of this paper is to study the impact of combining hydrogen fuel cells with lithium-ion batteries through an ideal power-sharing architecture to mitigate the poor range and endurance of battery powered electric vertical takeoff and landing (eVTOL) aircraft. The benefits of combining the two sources is first illustrated by a conceptual sizing of an electric tiltrotor for an urban air taxi mission of 75 mi cruise and 5 min hover. It is shown that an aircraft of 5000–6000 lb gross weight can carry a practical payload of 500 lb (two to three seats) with present levels of battery specific energy (150 Wh/kg) if only a battery–fuel cell hybrid power plant is used, combined in an ideal power-sharing manner, as long as high burst C-rate batteries are available (4–10 C). A power plant using batteries alone can carry less than half the payload; use of fuel cells alone cannot lift off the ground. Next, the operation of such a system is demonstrated using systematic hardware testing. The concepts of unregulated and regulated power-sharing architectures are described. A regulated architecture that can implement ideal power sharing is built up in a step-by-step manner. It is found only two switches and three DC-to-DC converters are necessary, and if placed appropriately, are sufficient to achieve the desired power flow. Finally, a simple power system model is developed, validated with test data and used to gain fundamental understanding of power sharing.

Publisher

American Helicopter Society

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3