Coupled and Trimmed Aerodynamic and Aeroacoustic Simulations for Airbus Helicopters' Compound Helicopter RACER

Author:

Öhrle Constantin,Frey Felix,Thiemeier Jakob,Keßler Manuel,Kräamer Ewald

Abstract

In recent years, various helicopter manufacturers increasingly have been focusing on the development of new high-speed rotorcraft configurations, one of them being the compound helicopter RACER (rapid and cost-efficient rotorcraft) of Airbus Helicopters (AH). However, these new configurations encounter new aeromechanic challenges, in terms of aerodynamic interactions, flight mechanics stability, rotor dynamics, or aeroacoustic noise emission, to name only a few. To support AH at the minimization of risk of RACER's first flight, the Institute of Aerodynamics and Gas Dynamics provides high-fidelity coupled and trimmed aerodynamic and aeroacoustic simulations of the complete helicopter by the application of a multidisciplinary tool chain. In its first part, the work focuses on the description of this advanced tool chain and on important features for the analysis of this new configuration. In the second part, exemplary simulation results for a hover and a high-speed cruise flight condition are shown, and the main aerodynamic interactions between the different components are identified. As expected for this configuration, numerous interactions are found for both flight cases, e.g., main rotor–propeller interaction in hover or main rotor–wing interaction in high-speed flight. Finally, aeroacoustic results are shown for hover with a close look at the propellers' contribution.

Publisher

American Helicopter Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3