Using Control Redundancy for Power and Vibration Reduction on a Coaxial Rotor Helicopter at High Speeds

Author:

Jacobellis George,Gandhi Farhan,Floros Matthew

Abstract

This study uses the Rotorcraft Comprehensive Analysis System (RCAS) to examine the effect of control redundancy on power and vibratory hub loads of a lift-offset coaxial rotor helicopter operating at 230 kt cruise speed. An aircraft nose-up pitch attitude of 3° resulted in very low main rotor power (less than 10% of the total power), with the majority of the power consumption attributed to an efficient axial propeller. At this 3° pitch attitude, the rotor speed and differential lateral pitch, which are redundant controls, were parametrically varied, and low power (LP) and low vibration (LV) states identified. The LP state (80% Nr and 3° differential lateral) required 3.5% lower power than the LV state (90% Nr and 0° differential lateral), but the latter had substantially lower 3/rev vibratory hub loads. The lower power in the LP state is primarily due to reduced main rotor power on account of smaller drag on the advancing blade tip at lower rotor speeds. The rotor drag is comparable for the two states, but the LV state has larger drag contributions from the advancing side, whereas the LP state has larger contributions from the reverse flow region (accounting for 14% of the total rotor drag) due to higher pitch on the retreating side and larger reverse flow velocities. Even so, the rotor drag accounts for under 30% of the total propulsor thrust requirement, with the fuselage (and hub) drag being the dominant component. Rotor L/De values for the LP and LV states were 12.3 and 11.3, respectively.

Publisher

American Helicopter Society

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3