Author:
Eberle Brian F.,Rogers Jonathan D.
Abstract
Autorotation maneuvers inherently offer little margin for error in execution and induce high pilot workload, particularly as the aircraft nears the ground in an autorotative flare. Control augmentation systems may potentially reduce pilot workload while simultaneously improving the
likelihood of a successful landing by offering the pilot appropriate cues. This paper presents an initial investigation of a real-time trajectory generation scheme for autorotative flare based on time-to-contact theory. The algorithm exhibits deterministic runtime performance and provides
a speed trajectory that can be tracked by a pilot or inner-loop controller to bring the vehicle to a desired landing point at the time of touchdown. A low-order model of the helicopter dynamics in autorotation is used to evaluate dynamic feasibility of the generated trajectories. By generating
and evaluating trajectories to an array of candidate landing points, the set of reachable landing points in front of the aircraft is determined. Simulation results are presented in which the trajectory generator is coupled with a previously derived autorotation controller. Example cases and
trade studies are conducted in a six degree-of-freedom simulation environment to demonstrate overall performance as well as robustness of the algorithm to variations in target landing point, helicopter gross weight, and winds. The robustness of the reachability determination portion of the
algorithm is likewise evaluated through trade studies examining off-nominal flare entry conditions and the effects of winds.
Publisher
American Helicopter Society
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献