Aeroacoustic Analysis of a Lift-Offset Coaxial Rotor Using High-Fidelity CFD/CSD Loose Coupling Simulation

Author:

(Henry) Jia Zhongqi,Lee Seongkyu,Sharma Kalki,Brentner Kenneth S.

Abstract

This paper presents the aeroacoustic analysis of a lift-offset coaxial rotor in high-speed forward flight using the high-fidelity computational fluid dynamics/computational structural dynamics (CFD/CSD) loose coupling software Helios. Acoustic simulations are performed using the software PSU-WOPWOP at eight microphones positioned below the coaxial rotor. The total power of the three speed cases—100, 150, and 200 kt—is validated against flight-test data and shows good agreement. A series of parametric studies is also conducted to investigate the effect of lift offset, flight speed, and rotor-to-rotor separation distance on acoustics of the coaxial rotor. Strong blade-crossover and self-blade–vortex interaction events of the coaxial rotor, which are major sources of loading noise, are captured via high-fidelity CFD simulations in all speed cases. Highly impulsive acoustic pressure signals are identified in all simulation cases, and the magnitude of mid-frequency sound pressure level (SPL) increases significantly with increasing flight speed and lift offset. The strength of mid-frequency SPL, on the other hand, is reduced significantly as the rotor-to-rotor separation distance increases at 100 kt. However, the higher speed cases do not show a significant reduction in mid-frequency SPL with increasing separation distance.

Publisher

American Helicopter Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3