Linear Time-Invariant Approximations of Nonlinear Time-Periodic Systems

Author:

Saetti Umberto1,Horn Joseph F.2

Affiliation:

1. Department of Aerospace Engineering, Auburn University, Auburn, AL

2. Department of Aerospace Engineering, Pennsylvania State University, University Park, PA

Abstract

This paper discusses the development of a numerical method for the approximation of the nonlinear time-periodic rotorcraft flight dynamics with higher order linear time-invariant (LTI) models. The method relies on a per-rotor revolution perturbation scheme, which is of particular importance for the linearization of simulation models that do not allow for per-time-step perturbations, and for those output measures that necessitate the solution of partial differential equations and thus require several time steps to be computed. The paper demonstrates the application of the proposed methodology to obtain high-order LTI models capable of predicting vibrations for a generic utility helicopter. Simulations are used to validate the response of the linearized models against those from nonlinear simulations and from competing approaches in the literature. The proposed method is shown to predict accurately the nonlinear response for the case shown and for small amplitude maneuvers. Frequency-domain validation is also performed to compare the linear models derived with the proposed method with those obtained with harmonic decomposition, a competing approach based on a per-time-step perturbation scheme. Interestingly, the proposed algorithm yields nearly identical numerical results compared to harmonic decomposition, suggesting that the two methods are in fact equivalent but rely on different formulations.

Publisher

AHS International dba Vertical Flight Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3