A Comparison of Tonal Noise Characteristics of Large Multicopters With Phased Rotors

Author:

Smith Brendan1,Gandhi Farhan1,Niemiec Robert1

Affiliation:

1. Center for Mobility with Vertical Lift (MOVE), Rensselaer Polytechnic Institute Troy, New York, United States

Abstract

This study examines the acoustic behavior in hover of manned -size, multirotor, eVTOL aircraft in the classical quadcopter, hexacopter, and octocopter configurations. The rotors are assumed to have collective pitch control and operate at a specified RPM, with orthogonal and tip-to-tip rotor phasing considered. All configurations have the same disk loading and tip Mach number, with the rotor radius decreasing and RPM increasing, going from the quadcopter to the octocopter. The simulations use the Rensselaer Multicopter Analysis Code for the aerodynamic loads on the blades, coupled to an acoustic propagation code for noise predictions at selected observer locations. From the simulation results, orthogonal phasing between rotors is shown to produce significant noise reductions along interboom bisectors (between 9 and 14 dB relative to an equivalent single rotor, at 6 lb/ft2 disk loading and 0.51 tip Mach number). Further reducing the tip Mach number not only reduces the propagated noise but produces even deeper regions of quiet along the interboom bisectors (18–25 dB quieter at 3 lb/ft 2 with 0.36 tip Mach number). An examination of the sound pressure level frequency spectra indicates that smaller faster spinning rotors (going from the quadcopter to octocopter) produce more tonal peaks at higher frequencies which would result in penalties in A-weighted noise.

Publisher

AHS International dba Vertical Flight Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3