Affiliation:
1. The University of Tennessee Knoxville, Knoxville, TN
Abstract
Reynolds stresses and turbulent kinetic energy are studied in the wakes of several helicopter rotor hub geometries in forward flight. Computational fluid dynamics simulations are performed using NASA's OVERFLOW 2.2n Reynoldsaveraged Navier–Stokes solver. The simulations impose
flow conditions based on previous and current experimental and numerical studies. Discrete Fourier transforms are used to examine velocity harmonics for several frequencies and compared against available experimental results. Components of the Reynolds stress tensor are computed and examined.
Production and transport of the turbulent kinetic energy are examined through the rotor hub wakes at six streamwise coordinates. It was found that the scissor arms, previously found to have a significant effect on rotor hub force harmonics, also had a significant effect on the magnitudes of
Reynolds stresses and turbulent kinetic energy. Integrated values of turbulent kinetic energy flux indicate that drag-reducing designs have a direct effect on turbulent kinetic energy levels in the wake.
Publisher
AHS International dba Vertical Flight Society