Deep Learning Based Obstacle Awareness from Airborne Optical Sensors

Author:

Ammalladene-Venkata Manogna1,Halbe Omkar2,Seidel Christian2,Groitl Christine3,Kramel Lothar3,Stahl Christoph3,Seidel Heiko3

Affiliation:

1. Avionics and Systems Engineering, Airbus Helicopters Deutschland GmbH, Donauwörth, Germany

2. Professor of Intelligent Autonomous Flight Guidance, Technische Hochschule Ingolstadt, Ingolstadt, Germany

3. Intelligence Surveillance Reconnaissance Systems Engineering Airbus Defense & Space GmbH, Manching, Germany

Abstract

Aviation statistics identify collision with terrain and obstacles as a leading cause of helicopter accidents. Assisting helicopter pilots in detecting the presence of obstacles can greatly mitigate the risk of collisions. However, only a limited number of helicopters in operation have an installed helicopter terrain awareness and warning system (HTAWS), while the cost of active obstacle warning systems remains prohibitive for many civil operators. In this work, we apply machine learning to automate obstacle detection and classification in combination with commercially available airborne optical sensors. While numerous techniques for learning-based object detection have been published in the literature, many of them are data and computation intensive. Our approach seeks to balance the detection and classification accuracy of the method with the size of the training data required and the runtime. Specifically, our approach combines the invariant feature extraction ability of pretrained deep convolutional neural networks (CNNs) and the high-speed training and classification ability of a novel, proprietary frequency-domain support vector machine (SVM) method. We describe our experimental setup comprising the CNN + SVM model and datasets of predefined classes of obstacles—pylons, chimneys, antennas, TV towers, wind turbines, helicopters—synthesized from prerecorded airborne video sequences of low-altitude helicopter flight. We analyze the detection performance using average precision, average recall, and runtime performance metrics on representative test data. Finally, we present a simple architecture for real-time, onboard implementation and discuss the obstacle detection performance of recently concluded flight tests.

Publisher

AHS International dba Vertical Flight Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3