Dynamic Stall Investigation on a Rotating Semielastic Double-swept Rotor Blade at the Rotor Test Facility Göttingen

Author:

Müller Martin M.1,Weiss Armin2,Braukmann Johannes N.1

Affiliation:

1. German Aerospace Center (DLR), Göttingen, Germany

2. German Aerospace Center (DLR), Cologne, Germany

Abstract

Experimental investigations of three-dimensional dynamic stall on a four-bladed Mach-scaled semielastic rotor with an innovative double-swept rotor blade planform are presented. The study focuses on the coupling between the aeroelastic behavior of the blade and the underlying aerodynamics. Blade bending moment and flap displacement measurements were conducted using strain gauges and optical tracking of blade tip markers. The aerodynamic behavior was characterized by means of unsteady surface pressure measurements using unsteady pressure-sensitive paint (iPSP) across the outer 65% of the blade span and fast response pressure transducers at discrete locations. Different cyclic-pitch settings were investigated at a rotation frequency of frotor = 23.6 Hz that corresponds to blade tip Mach and Reynolds numbers of Mtip = 0.282– 0.285 and Retip = 5.84-5.95 ×10 5. The findings reveal a detailed insight into the nonlinear behavior in the flap movement during downstroke. iPSP and pressure transducer data indicate that this nonlinear flap behavior is caused by a radially phase-shifted dynamic stall process at the forward and backward swept part of the blade.

Publisher

AHS International dba Vertical Flight Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3