Structural Design and Aeromechanical Analysis of Unconventional Blades for Future Mars Rotorcraft

Author:

Lumba Ravi1,Chi Cheng1,Datta Anubhav,Koning Witold2,Perez Perez Natalia2,Cummings Haley2

Affiliation:

1. University of Maryland, College Park

2. NASA Ames Research Center, Moffett Field, CA

Abstract

The structural design of rotor blades with ultra-thin, unconventional airfoils is conducted in support of the NASA Rotor Optimization for the Advancement of Mars eXploration (ROAMX) project. The outer mold line was provided by NASA, and the internal structural design was developed at the University of Maryland using a CAD-based three-dimensional (3D) aeromechanical analysis. The main objectives of this paper are to document the unique aeroelastic behavior encountered due to the low Reynolds number (down to 15K) and high subsonic Mach number (up to 0.95). Four different blade designs are considered, with the pitch axis varied from quarter-chord to midchord to determine the effect of center of gravity (C. G.) offset on natural frequencies, blade deformations, root loads, and 3D stresses. Torsional stability is emphasized for each of the designs - especially important due to the low Lock number on Mars. The designs are first studied in vacuum, and significant reductions in root loads and 3D stresses are achieved by moving the pitch axis closer to midchord to reduce the C. G. offset. Next, the design with the pitch axis at 40% chord is selected for a lifting-line aeromechanical analysis. The blade control load, airloads, deformations, and 3D stresses are studied for steady hover. Dynamic control load and dynamic 3D stresses are studied for unsteady hover. Interesting elastic twist is observed due to the trapeze effect and propeller moment, in turn affecting the spanwise distribution of aerodynamic loads. The dynamic control load is found to increase significantly due to inertial coupling from the C. G. offset. The dynamic stresses also increase but still have factors of safety greater than two for both tensile and compressive stress.

Publisher

AHS International dba Vertical Flight Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3