Affiliation:
1. U.S. Army Combat Capabilities Development, Command Aviation & Missile Center, Moffett Field, CA
2. Department of Aerospace Engineering, The Pennsylvania State University, University Park, PA
Abstract
This paper presents a systematic investigation of high-speed rotorcraft pitch-axis response types, command models, and handling qualities specifications. The investigation was done using two future vertical lift-relevant rotorcraft configurations—a lift offset coaxial helicopter
with a pusher propeller and a tiltrotor. Five response types were investigated, consisting of a pitch rate-command/attitude-hold response type typically used for rotorcraft, a pitch rate-command/attitude-hold response type using a higher-order command model based on the conventional airplane
pitch rate transfer function, a normal acceleration command/angle-of-attack hold response type, a flight path rate command/flight path hold response type, and a "blended" flight path rate command response type which varies the command model bandwidth based on stick input size. Designs of varying
levels of pitch attitude bandwidth, flight path bandwidth, control anticipation parameter, and pitch attitude dropback were evaluated in a piloted simulation experiment conducted at the Penn State Flight Simulator facility using two high-speed mission task elements. The results of the piloted
simulation suggest that both the pitch attitude bandwidth and the pitch attitude dropback requirements must be met for Level 1 handling qualities. A set of recommended specifications and associated updated level boundaries is provided in the Appendix.
Publisher
AHS International dba Vertical Flight Society
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献