An Experimental Investigation of Ground Effect on a Quad Tilt Rotor in Hover

Author:

Mylapore Anand Radhakrishnan,Schmitz Fredric H.

Abstract

The performance of a 0.031 geometrically scaled fuselage/wing model of a Quad Tilt Rotor (QTR) operating in helicopter mode while hovering in-ground effect (IGE) and out-of-ground effect (OGE) was experimentally studied. The effect of ground proximity was tested by varying the height of the model above the ground. Measurements included download on the airframe; thrust, torque, and rpm of the rotors; and static pressures along the centerline of the bottom of the fuselage. Fixedpitch propellers were used to model the rotors. The downwash distributions of the rotors were measured and compared well with large-scale V-22 rotor measurements. Tuft flow visualization was used to identify the physical processes causing changes in the download and static pressure measurements. The uncertainty of the measured quantities was determined to 95% confidence levels. A significant download (9 ± 0.5% of the rotor thrust) was observed in hover, OGE. The download reduced substantially IGE and become an upload (8.5 ± 0.5% of the rotor thrust) when the wheels of the QTR were on the ground. Flow visualization and pressure measurements suggest that the upload IGE is caused by the interaction of the wakes from the four rotors that are turned parallel to the ground and meet under the fuselage. The measured download, coupled with power measurements, indicate that for a given power the available vehicle thrust significantly increases IGE.

Publisher

American Helicopter Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3