Simultaneous Blade–Vortex Interaction Noise and Vibration Reduction in Rotorcraft Using Microflaps, Including the Effect of Actuator Saturation

Author:

Padthe Ashwani K.,Friedmann Peretz P.

Abstract

The effectiveness of a sliding microflap to simultaneously reduce rotorcraft vibrations and noise was examined at a descending flight condition of advance ratio 0.15 with significant blade–vortex interactions (BVI). two configurations, namely dual and a five-microflap configuration, were considered. Closed-loop control studies were conducted on a hingeless rotor configuration resembling MBB BO-105, using the adaptive higher harmonic control algorithm. The performance of the microflap was also compared to a conventional trailing-edge plain flap. The results demonstrate the effectiveness and control authority of the microflap for simultaneous BVI noise and vibration reduction in rotorcraft. Finally, a new saturation control algorithm is developed for limiting the microflap or flap deflections such that the best utilization of on-blade controllers implemented through multiple control surfaces is achieved. The performance of the new algorithm is compared to the existing ones on the dual and five-microflap configurations.

Publisher

American Helicopter Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3