A Numerical Investigation of the Influence of the Blade–Vortex Interaction on the Dynamic Stall Onset

Author:

Castells Camille,Richez François,Costes Michel

Abstract

Recently, fluid–structure coupling simulations of helicopter rotors in high-thrust forward flight suggested that dynamic stall might be triggered by the blade–vortex interaction. However, no clear evidence of a correlation between dynamic stall and blade–vortex interaction has yet been given. We propose in this paper a simplified two-dimensional numerical model that can be used to indicate the role that the blade–vortex interaction plays in dynamic stall onset for different flight conditions. In this model, the rotor blade element is considered in pitching oscillation motion with a nonuniform translation, and a simplified vortex model can be introduced or not in the simulation to highlight the effect of blade–vortex interaction. All flow parameters of this simplified model are deduced from data provided by previous three-dimensional high-fidelity fluid–structure simulations. The method is used for validation and analysis of three flight conditions. The results show that, for the two cases with moderate advance ratio, the dynamic stall event is only triggered when a blade–vortex interaction occurs in the stall region. For the high-speed test case, the dynamic stall event seems to be only triggered by the very high angle of attack due to the motion of the blade.

Publisher

American Helicopter Society

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3