Aeromechanics and Control of a Shrouded Rotor Micro Air Vehicle in Hover and in Edgewise Flow

Author:

Hrishikeshavan Vikram,Chopra Inderjit

Abstract

Shrouded rotors are efficient in hover but are quite sensitive to disturbances in external flow. In this paper, the dynamics and control of a shrouded rotor micro air vehicle is studied in hover and when it is subjected to edgewise gust. The importance of incorporating a hingeless rotor in a shrouded rotor configuration was shown and was flight-tested in hover using a proportional-integral attitude feedback controller. In edgewise flow, the shrouded rotor produced up to 300% higher pitching moment than the unshrouded rotor. To counter this pitching moment, the control moments were about 80–100% higher for the shrouded rotor. Time domain attitude dynamics identification of the vehicle, restrained in translation, was conducted with and without the flybar. It was shown to be desirable to incorporate a flybarless rotor for improved maneuverability and hover efficiency. A linear quadratic regulator (LQR) controller was developed based on the extracted attitude dynamics model. Gust disturbance rejection capabilities of the controller were tested with the vehicle in edgewise flow using a spherical gimbal setup. The shrouded vehicle was found to tolerate up to 2 m/s of edgewise gusts, whereas the unshrouded configuration could reject gusts of up to 4.8 m/s.

Publisher

American Helicopter Society

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3