Self-Induced Velocity of a Vortex Ring Using Straight-Line Segmentation

Author:

Bhagwat Mahendra J.,Leishman J. Gordon

Abstract

The accuracy of discretized induced velocity calculations that can be obtained using straight-line vortex elements has been reexamined, primarily using the velocity field induced by a vortex ring as a reference. The induced velocity of a potential (inviscid) vortex ring is singular at the vortex ring itself. Analytical results were found by using a small azimuthal cutoff in the Biot–Savart integral over the vortex ring and showed that the singularity is logarithmic in the cutoff. Discrete numerical calculations showed the same behavior, with the self-induced velocity exhibiting a logarithmic singularity with respect to the discretization, which introduces an inherent cutoff in the Biot–Savart integral. Core regularization or desingularization can also eliminate the singularity by using an assumed “viscous” core model. Analytical approximations to the self-induced velocity of a thin-cored vortex ring have shown that the self-induced velocity has a logarithmic singularity in the core radius. It is further shown that the numerical calculations require special treatment of the self-induced velocity caused by curvature, which is lost by the inherent cutoff in the straight-line discretization, to correctly recover this logarithmic singularity in the core radius. Numerical solution using straight-line vortex segmentation, augmented with curved vortex elements only for the self-induced velocity calculation, is shown to be second-order accurate in the discretization.

Publisher

American Helicopter Society

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3