Ultraviolet-B band lasers fabricated on highly relaxed thick Al0.55Ga0.45N films grown on various types of AlN wafers

Author:

Kawase YutaORCID,Ikeda SyunyaORCID,Sakuragi Yusuke,Yasue Shinji,Iwayama Sho,Iwaya Motoaki,Takeuchi Tetsuya,Kamiyama Satoshi,Akasaki Isamu,Miyake Hideto

Abstract

Abstract In this paper, we investigated the dependence of threshold power density on the Al0.55Ga0.45N underlying layer film thickness in ultraviolet-B band (UV-B) lasers on various AlN wafers (four types). We also prepared and compared AlN templates for AlN freestanding substrates, AlN films fabricated by metalorganic vapor phase epitaxy, and annealed sputtered AlN templates at high temperature. The initial growth of AlGaN became three-dimensional by inserting a homoepitaxial Ga-doped AlN layer between the AlN template and Al0.55Ga0.45N, before it shifted to two-dimensional growth. It is possible to reduce the dislocation in Al0.55Ga0.45N using this mode. The dependence of AlGaN film thickness and that of the AlN template on samples with an inserted homoepitaxial Ga-doped AlN layer were studied. Compared with Al0.55Ga0.45N having a thickness of 5 μm, there was almost no noticeable difference between the dark spot density characterized by cathodoluminescence and the threshold power density in UV-B lasers for the AlN template. Besides, the characteristics were noticeably different for the film thickness of Al0.55Ga0.45N. The threshold power density in UV-B laser and dark spot density were reduced by increasing the film thickness. Through the optimization of the crystal growth condition, the threshold power density in UV-B laser and dark spot density were reduced to 36 kW cm−2 and 7.5 × 108 cm−2, respectively.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Japan Society for the Promotion of Science

Core Research for Evolutional Science and Technology

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Physics and Astronomy (miscellaneous),General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3