On the relationship between fundamental science and contemporary applied research in the field of high-rate laser Nanowhiskerography

Author:

Maksimovsky Sergey Nikoloaevich,Bobkov Alexandr Nikolaevich,Stavtsev Aleksey Urievich

Abstract

In practice, in various areas of life, there is often a need to use materials that have mutually exclusive requirements. Therefore, the study of the issues related to manufacturing materials in certain states for certain technical applications, and methods of controlling structurally sensitive properties to obtain specified effects, is quite relevant today. A new effect was discovered, namely, the rapid growth of amorphous and composite materials in the form of “coherent” nanowhiskers using laser-induced plasma at temperatures exceeding 4,000oC and high pressures up to 100 thousand atmospheres at a rate reaching 80-100 m/s. This method of growing whiskers is based on fundamental studies of pulsed laser radiation and predictions of Nobel Prize laureates – Ch.H. Townes, A.M. Prokhorov (splitting of a laser beam of above-threshold power) and G.A. Askaryan (effects of self-focusing of light in the condensed state of matter, and sublimation evaporation). The authors show possible practical applications of this method, such as protection of securities, banknotes, and plastic cards, as well as production of a new type of silicon batteries, automotive catalysts, and solar silicon batteries.

Publisher

Latin America Journals Online

Subject

Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3