Design of bio-inspired irregular porous structure applied to intelligent mobility products

Author:

Armendáriz-Mireles Eddie N.,Raudi-Butrón Francisco D.,Olvera-Carreño Melissa A.,Rocha-Rangel Enrique

Abstract

Material structure is a crucial part of the design of any product where the intention is to dissipate loads and lighten material. Because some structures today are increasingly complex in geometry and internal structure, it becomes impossible to opt for traditional methods to manufacture them. In this sense, additive manufacturing enables the creation of complex structures with intricate geometries. As manufacturers seek to optimize material properties and performance in a variety of stress conditions, bio-inspired engineering looks at nature for solving the most complex human challenges. By imitating nature’s patterns and shapes, we can optimize fracture resistance, energy absorption, and toughness in materials. In this work, we employ voronoi tessellation patterns and computer-aided design software to design an algorithm for the creation of irregular porous structures, similar to those found in nature (e.g., trabecular bone). This algorithm is scalable and applicable to any product that needs to comply with lightweight requirements and outstanding mechanical properties. Herein, the authors perform static compression tests to determine mechanical properties. The results indicated that the mechanical properties depend directly on the microstructural characteristics of the porous structure itself. Besides, surface area and porosity are the principal parameters to be controlled. Finally, the algorithm has a wide range of engineering applications in the automotive and aerospace industries.

Publisher

Consejo Nacional de Universidades

Subject

Polymers and Plastics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3