Using the band ratio approach, FULL-PIXEL (SAM and SFF) and SUB-PIXEL (MF and SID) methodologies to discover areas with alteration using the Aster sensor: a case study in north westen Iran - Sivardaghi Area

Author:

Bagheri Majid,Ashja Ardalan Afshin,Ganji Alireza,Asiabar Saeed Hakimi,Ali Arin Mohammad

Abstract

ASTER sensor data is among the most potent satellite data accessible for doing geological investigations, with images for the whole earth's surface. In order to test the capability of this sensor to detect places with geochemical alterations, photographs of Mount Seiver Daghi in the western Iranian province of Samal were utilized in this study. This region, which comprises of magmatic and volcanic terrain, is part of the Arsbaran territory and is covered by intrusive masses with alluvial and sedimentary deposits. To conduct this study, an ASTER measuring frame was utilized, which, after performing atmospheric corrections using the internal average relative reflectance (IARR) method of false color composite images and principal component analysis (PCA), was able to differentiate between different lithological units using the Band assignment method, full-pixel methods of spectral angle mapper (SAM) and base spectrum algorithm of spectral  feature fitting (SFF) as well as sub-pixel methods of matched filtering. The study demonstrates that the approach of principal component analysis and false color composition is efficient for distinguishing sedimentary rock units from igneous rock units, and its application is suggested for the designated rock units. Due to the lack of spectral characteristics of feldspars and quartz in the short infrared wavelength range, the basic spectrum methods utilized in this work are incapable of identifying such minerals. It is not advised to use these algorithms to distinguish between various magmatic units.

Publisher

Consejo Nacional de Universidades

Subject

Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3