Text: now in 2D! A framework for lexical expansion with contextual similarity

Author:

Biemann Chris,Riedl Martin

Abstract

A new metaphor of two-dimensional text for data-driven semantic modeling of natural language is proposed, which provides an entirely new angle on the representation of text: not only syntagmatic relations are annotated in the text, but also paradigmatic relations are made explicit by generating lexical expansions. We operationalize distributional similarity in a general framework for large corpora, and describe a new method to generate similar terms in context. Our evaluation shows that distributional similarity is able to produce highquality lexical resources in an unsupervised and knowledge-free way, and that our highly scalable similarity measure yields better scores in a WordNet-based evaluation than previous measures for very large corpora. Evaluating on a lexical substitution task, we find that our contextualization method improves over a non-contextualized baseline across all parts of speech, and we show how the metaphor can be applied successfully to part-of-speech tagging. A number of ways to extend and improve the contextualization method within our framework are discussed. As opposed to comparable approaches, our framework defines a model of lexical expansions in context that can generate the expansions as opposed to ranking a given list, and thus does not require existing lexical-semantic resources.

Publisher

Institute of Computer Science, Polish Academy of Sciences

Subject

Computer Science Applications,Linguistics and Language,Modelling and Simulation

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unsupervised Ultra-Fine Entity Typing with Distributionally Induced Word Senses;Lecture Notes in Computer Science;2024

2. Text augmentation for semantic frame induction and parsing;Language Resources and Evaluation;2023-10-21

3. Using distributional thesaurus to enhance transformer-based contextualized representations for low resource languages;Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing;2022-04-25

4. Hypernymy Detection for Low-resource Languages: A Study for Hindi, Bengali, and Amharic;ACM Transactions on Asian and Low-Resource Language Information Processing;2022-03-04

5. Network embeddings from distributional thesauri for improving static word representations;Expert Systems with Applications;2022-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3