Control of density and velocity of emulsion explosives detonation for ore breaking

Author:

Kononenko M.MORCID,Khomenko O.YeORCID,Kovalenko I.LORCID,Savchenko M.V

Abstract

Purpose.Development of a new procedure for calculating the density of emulsion explosives (EE), that will allow determining the detonation velocity along the charging length, depending on the inclination of boreholes during ore breaking. Methodology.A calculation method for the redistribution of EE density and mass in boreholes at different angles of inclination has been developed by using the well-known laws of hydrostatics. Measurement of the detonation velocity of the EE Ukrainit-PP-2B was conducted by using the method of polygon experimental tests. The numerical simulation of changes in the detonation velocity of explosives in boreholes was conducted by using the proposed method and established regularities. Findings.Methods of calculation of EE density changing along the charging column length under the action of hydrostatic pressure at different angles of inclination of both ascending and descending boreholes have been developed. Based on experimental data, regularities of detonation rate changing from density and charge diameter for EE Ukrainit-PP-2B, varying according to exponential law have been established. The rational initial density of EE Ukrainit-PP-2B has been established for ores breaking by boreholes, which is equal to 8001000 kg/m3, at which the detonation rate along the length of the charge column at different angles of inclination of the boreholes is maintained. The obtained results will allow controlling density and detonation velocity during ore breaking. Originality.The density of EE increases in the formed charging column under the action of hydrostatic pressure: in ascending boreholes from the face, while in descending boreholes from the brow. Practical value.Application of the calculation results of EE density at different inclination angles of boreholes makes it possible to determine in the charge column sections with its critical values more than 1410 kg/m3, at which a sharp attenuation of the detonation rate begins. Consideration of this phenomenon makes it possible to prevent the occurrence of failures at the explosion of charges in boreholes during ore breaking.

Publisher

Dnipro University of Technology

Subject

Industrial and Manufacturing Engineering,General Engineering,Geotechnical Engineering and Engineering Geology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3