Assessment of coal mining impact on the geoecological transformation of the Emerald network ecosystem

Author:

Novitskyi RORCID,Masiuk OORCID,Hapich HORCID,Pavlychenko AORCID,Kovalenko VORCID

Abstract

Purpose. Geoecological assessment of impact on the ecosystem transformation of a part of Emerald Network object “Samarskyi Lis – UA0000212” caused by coal mining at the section of “Ternivska” mine (Dnipropetrovsk region, Ukraine) using the methods of remote sensing of the Earth in conditions of limited access to the study object due to the state of martial law in Ukraine. Methodology. A complex of standardized field, paper, laboratory and statistical research methods was used. When studying aquatic vegetation, generally accepted methods for describing the species and coenotic composition of vegetation and hydrobotanical mapping were used. The study on soil vegetation was carried out with the selection and description of the main phytocenoses, features of their composition and distribution on the territory. Floristic studies were carried out according to the method for collecting herbarium material. Field routes were carried out on the land surface along the mining of the coal bed with the recording of destructive changes in the landscape (falls, top-soil breaks, sufosis manifestations, cracks, lowering of the relief) and plant groups – the colour and condition of tree, shrub and grass vegetation. In order to compare visual observation data and obtain representative and reliable research results, the facility was monitored additionally using modern geoinformation systems. A satellite observation tool was used; it allowed searching, processing, and obtaining information from satellite data according to various indexes: WRI, NDWI, MNDWI, NDSI. Findings. Negative consequences of the impact of the coal mine “Ternivska” on the geological and ecological transformation of the Emerald network ecosystem “Samarskyi Lis – UA0000212” have been established. It has been proven that long-term underflooding and flooding of lands leads to a change in the species composition of the forest stand, the death of the understory and grass layer, and the complete destruction of the existing plant and animal communities. In flooded areas of oak forests and pine plantations, forest species die out and wetland plant species spread. Over three years (2020–2023), the area of visible and established flooding according to remote sensing data has increased from 1 to 6 hectares, respectively. Originality. Dynamics of the process of the land surface subsidence and protected area flooding has been established according to the data of open-source geoinformation systems and the comparison of various satellite data indexes (WRI, NDWI, MNDWI, NDSI). Gradual changes in the species composition of the forest stand, the death of the understory and the grass layer were revealed. It has been confirmed that long-term flooding leads to the complete destruction of existing plant and animal communities, the destruction of compound complexes of soil mesofauna makes development impossible for the terrestrial invertebrate species that lived in these biotopes before their destruction, including species from the Red List of Ukraine and protected by the Berne Convention. Practical value. In the conditions of limited access for conducting direct geodetic and engineering-geological studies, the methodology of using modern GIS by combining various spectral channels (indexes) is substantiated to determine and study the dynamics of the underflooding (flooding) process in the territory. In combination with traditional field geobotanical research, the results of monitoring observations of the coal mining activity and its impact on the geoecological transformation of the ecosystem of the Emerald Network object are presented for the first time in the region. The negative impact of mining activity on natural conservation areas, which leads to the death and gradual change in the species composition of plants, has been determined.

Publisher

Dnipro University of Technology

Subject

Industrial and Manufacturing Engineering,General Engineering,Geotechnical Engineering and Engineering Geology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3