Analysis of the roof span stability in terms of room-and-pillar system of ore deposit mining

Author:

Zhienbayev AbzalORCID,Balpanova MereyORCID,Asanova ZhanarORCID,Zharaspaev MadiyarORCID,Nurkasyn RustemORCID,Zhakupov BolegenORCID

Abstract

Purpose. To ensure the roof span stability in terms of room-and-pillar system of mining taking into consideration the calculations, modelling, and statistic analysis of factual rock falls from the roof. Methods. Analysis of inelastic deformations to define overall displacement of a thin-layer roof of the chamber being 9 m wide was performed with the help of software complex RS2. To estimate the effect of chamber spans on the roof stability, a problem was considered in two variants where chamber width was 8 and then 7 m. The results were analyzed in terms of strength factor of the interchamber pillars. Statistic analysis of the roof stability loss for the chambers was carried out according to the results of monitoring of a state of the worked-out space in the context of the Zhaman-Aibat deposit. The obtained data were compared in terms of chamber roof spans being 9-7 m. Findings. The performed studies make it possible to state that the reduction of chamber spans down to 7 m decreases the roof deflection up to 2 cm and ensures stability of both chamber roof and worked-out space by 13 times; in its turn, that results in safe conditions while stoping. Optimal parameters of the roof span stability for chambers and safe mining conditions were substantiated basing on computer modelling and statistic analysis of the results of geotechnical monitoring of a state of worked-out space at the Zhaman-Aibat deposit. Originality. The regularity of changes in the safety factor of the peripheral part of a chamber was substantiated depending on the chamber width (7, 8, and 9 m) and considering the distance from the contoured chamber (m). Reduction of the chamber span by 1 m (from 9 to 8 m) reduces roof deflection by 2 times (up to 5 cm); moreover, breaking depth in the roof experiences considerable reduction – up to 1.75 m. Reduction of the chamber span by 1 m more (from 8 to 7 m) reduces the roof deflection up to 2 cm; breaking depth in the roof decreases considerably as well – up to 1.33 m. Practical implications. The proposed variant of chamber span reduction can decrease significantly the total area of rock falls and ensure stability of the worked-out space of the Zhomart mine where roof stability is the weakest element on the mining system. The obtained results can be the basis for the development of methodological recommendations to calculate mining parameters at the Zhaman-Aibat deposit as well as at other deposits with medium roof stability.

Publisher

Dnipro University of Technology

Subject

Geochemistry and Petrology,Geotechnical Engineering and Engineering Geology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3