Abstract
Purpose. Studying the process of carbon dioxide injection at the boundary of the initial gas-water contact in order to slow down the formation water inflow into producing reservoirs and increase the final hydrocarbon recovery factors. Methods. To assess the influence on gas recovery factor of the duration of carbon dioxide injection period at the initial gas-water contact, a reservoir development is studied using the main Eclipse and Petrel hydrodynamic modeling tools of the Schlumberger company on the example of a hypothetical three-dimensional model of a gas-condensate reservoir. Findings. The dependence of the main technological indicators of reservoir development on the duration of the carbon dioxide injection period at the initial gas-water contact has been determined. It has been revealed that an increase in the duration of the non-hydrocarbon gas injection period leads to a decrease in the formation water cumulative production. It has been found that when injecting carbon dioxide, an artificial barrier is created due to which the formation water inflow into the gas-saturated intervals of the productive horizon is partially blocked. The final gas recovery factor when injecting carbon dioxide is 61.98%, and when developing the reservoir for depletion – 48.04%. The results of the research performed indicate the technological efficiency of carbon dioxide injection at the boundary of the initial gas-water contact in order to slow down the formation water inflow into producing reservoirs and increase the final hydrocarbon recovery factors for the conditions of a particular field. Originality. The optimal value of duration of the carbon dioxide injection period at the initial gas-water contact has been determined, which is 16.32 months based on the statistical processing of calculated data for the conditions of a particular field. Practical implications. The use of the results makes it possible to improve the existing technologies for the gas condensate fields development under water drive and to increase the final hydrocarbon recovery factor.
Publisher
Dnipro University of Technology
Subject
Geochemistry and Petrology,Geotechnical Engineering and Engineering Geology
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献