Neural simulation-based analysis of the well wall stability while productive seam penetrating

Author:

Katanov YuriyORCID,Vaganov YuriyORCID,Cheymetov MatveyORCID

Abstract

Purpose is the development of mathematical models to evaluate deformation of parameters of the rock mass-well geological and engineering system within the anisotropic media. Methods. Both mathematical and neural modeling of a stress state of the rock mass-well system under conditions of geological uncertainty has been applied for the studies. From the viewpoint of mathematical modeling, analysis of probability of factors, complicating drilling, should involve a number of assumptions for strength and deformation characteristics of rock mass layers corresponding to particular hole-making conditions. Findings. A mathematical model of horizontal wellbore and geological layers, occurring along the structure under the conditions of permanent comprehensive stresses, has been developed. An analytical and graphical form has been applied to implement one of the basic aspects of aggregation principles of strength changes in each particular lithological layer for identification of an ideal value of horizontal/inclined wellbore length relative to the rock mass depths scheduled by mining. Regularities of changes in deformation and spatial well stability within the complex reservoirs depending upon various process duties have been determined. A neural simulation-based model has been proposed to analyze deformation of rock mass layers having different strength characteristics. Originality. Interaction between geomechanical characteristics of rock mass as well as deformation and spatial stability of well design has been evaluated both qualitatively and quantitatively. Practical implications. An opportunity has been presented to forecast deformation of well walls taking into consideration different strength as well as structural and geological rock mass characteristics on the basis of neural simulation. The represented approach has been included on the register of the best scientific-based practices according to “Methods to recover low-pressure gas of Cenomanian producing complex” Project.

Publisher

Dnipro University of Technology

Subject

Geochemistry and Petrology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3