Optimization of gas recycling technique in development of gas-condensate fields

Author:

Matkivskyi SerhiiORCID

Abstract

Purpose. The research purpose is to increase the efficiency of development of gas condensate fields with a high condensate yield in the reservoir gas and to develop optimal ways of increasing their hydrocarbon recovery. Methods. The effectiveness of the implementation of reservoir pressure maintenance technologies using dry gas for the development of gas condensate fields with a high condensate yield in the reservoir gas is studied on the basis of a heterogeneous 3D model using the Schlumberger Eclipse and Petrel software packages. The technological indicators of the development of gas-condensate reservoir are studied for different pressure values at the beginning of the dry gas injection. Calculations were made for pressures at the beginning of injection at the level of: 1.0 Рinit; 0.8 Рinit; 0.6 Рinit; 0.4 Рinit; 0.2 Рinit. Findings. It has been determined that when the dry gas is injected into a gas-condensate reservoir, reservoir pressure is maintained at a significantly higher level than it is in the case of depletion. This ensures stable operation of production wells over a longer period of the reservoir development. According to the research results, it should be noted that in the case of implementation of the reservoir pressure maintenance technology, a part of the precipitated condensate is transferred to the gas phase, which makes it necessary to extract it together with the reservoir gas. Based on the modeling results, the ultimate condensate recovery factor have been calculated. The calculation results indicate that in the case of the cycling process implementation, the ultimate condensate recovery factor of the gas-condensate reservoir increases by 7.26% compared to depletion development. Originality. Based on the calculation data analysis, the optimal pressure value at the beginning of dry gas injection into a gas-condensate reservoir has been determined, which is 0.842 Рinit. Practical implications. The use of the conducted research results will optimize the development system of gas-condensate fields with high initial condensate yield in the reservoir gas and increase the efficiency of development the explored hydrocarbon reserves in the conditions of a significant shortage of hydrocarbon raw materials in Ukraine. The conducted research results indicate the high technological efficiency of the reservoir pressure maintenance technology using dry gas.

Publisher

Dnipro University of Technology

Subject

Geochemistry and Petrology,Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3