Substantiation of mining systems for steeply dipping low-thickness ore bodies with controlled continuous stope extraction

Author:

Rysbekov KanayORCID,Bitimbayev MaratORCID,Akhmetkanov DalelkhanORCID,Yelemessov KassymORCID,Barmenshinova MadinaORCID,Toktarov AyanORCID,Baskanbayeva DinaraORCID

Abstract

Purpose. The solution to one of the important problems of the underground mining method is to substantiate cost-effective, technologically feasible and safe variants for mining steeply dipping low-thickness ore bodies. Methods. Mining systems are substantiated on the basis of a detailed analysis of the developed and existing experiential variants for mining steeply dipping ore bodies, identifying production and economic disadvantages, as well as their causes. Findings.As a result of the research, the pillar raise performance in the mining system with ore shrinkage has been substantiated. The main parameters of the proposed variants for mining systems with ore shrinkage, intended for expansion-type supports and borehole breaking, have been substantiated. A design has been developed of fastening the material-running raises (MRR) and ventilating raises (VR) on the working and ventilation horizons to ensure their performance in the mining system with ore shrinkage. Originality. For the first time, dependences of dilution and labour productivity on the ore body thickness and the type of ore breaking for blast-hole stoping and borehole breaking for a single and “twinned block” have been obtained. In addition, a certain dependence of the loading and delivery performance on the average fractional composition, as well as on the delivery distance, has been obtained. Practical implications. The research is characterized by scientific innovations created for the first time, which are able to ensure the efficiency and safety of mining operations, while creating the ability to manage the loss of minerals and dilution in the block, as well as reaching their calculated optimal ratio in order to achieve the most cost-effective production rate.

Publisher

Dnipro University of Technology

Subject

Geochemistry and Petrology,Geotechnical Engineering and Engineering Geology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3