Matrix Neo-Fuzzy-System and its Online Learning in Image Recognition Task

Author:

Chala Olha1ORCID,Bodyanskiy Yevgeniy1

Affiliation:

1. Kharkiv National University of Radio Electronics, Ukraine

Abstract

The paper proposes a 2D-hybrid system of computational intelligence, which is based on the generalized neo-fuzzy neuron. The system is characterised by high approximate abilities, simple computational implementation, and high learning speed. The characteristic property of the proposed system is that on its input the signal is fed not in the traditional vector form, but in the image-matrix form. Such an approach allows getting rid of additional convolution-pooling layers that are used in deep neural networks as an encoder. The main elements of the proposed system are a fuzzified multidimensional bilinear model, additional softmax layer, and multidimensional generalized neo-fuzzy neuron tuning with cross-entropy criterion. Compared to deep neural systems, the proposed matrix neo-fuzzy system contains gradually fewer tuning parameters – synaptic weights. The usage of the time-optimal algorithm for tuning synaptic weights allows implementing learning in an online mode.

Publisher

Riga Technical University

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3