Simulation and Analysis of the Code Domain NOMA with UFMC for 5G Wireless Networks

Author:

Jolania SmitaORCID,Sindal Ravi,Saxena Ankit

Abstract

In fifth generation (5G) wireless networks, radio access techniques and multi-carrier waveforms play a vital role in meeting the diversified demands of ultra-low latency, massive connectivity, and higher throughput. Multi-access schemes used conventionally in 4G system was Orthogonal Multiple Access (OMA) technique. The OMA techniques suffer from inefficient spectrum utilization, high latency, and supports a limited number of users. Next-generation networks, Non-Orthogonal Multiple Access (NOMA), has a great potential, in which multiple users are simultaneously served using the same time, frequency, or code resource increasing the throughput. Code domain-NOMA (CD-NOMA) is the key technique implemented in the system design where multiple users are distinguished based on unique user-specific spreading codes. The NOMA system could significantly benefit from Universal Filtered Multi-Carrier (UFMC) modulation waveform in terms of flexibility, spectral efficiency, compatibility with Multiple Input Multiple Output (MIMO) technique, and relaxed synchronization requirements. The novel integrated system proposed in the paper is CD-NOMA-UFMC with convolutional codes. The major outcome of the paper is that the combination of UFMC air interface modulation technique with CD-NOMA access method can be the most effective way to meet the growing demands of 5G.

Publisher

Riga Technical University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3