Multi-Scale Decay Mechanism of Emulsified Asphalt Cold Recycled Mixture Under Freeze-Thaw

Author:

Yang Yanhai1ORCID,Yue Liang1ORCID,Yang Ye2ORCID,Chen Guanliang1ORCID

Affiliation:

1. School of Transportation and Geomatics Engineering, Shenyang Jianzhu University, Shenyang, China

2. School of Transportation and Geomatics Engineering, Shenyang Jianzhu University, Shenyang, China; College of Transportation Engineering, Dalian Maritime University, Dalian, China

Abstract

The road performance decay law of EACRM under freeze-thaw cycles was studied using laboratory tests on the macroscopic scale in order to comprehensively analyze the serious performance damage mechanism of emulsified asphalt cold recycled mixture (EACRM) in cold regions during the service period. The surface cracking behavior, internal void evolution characteristics, and asphalt mortar morphology damage of EACRM under freeze-thaw cycles were studied by means of digital speckle, industrial CT, and scanning electron microscope (SEM) on the mesoscopic and microscopic scale. The results show that along with the increase in the number of freeze-thaw cycles, the road performance of EACRM decreases significantly. The surface of EACRM obviously cracks, and the width and number of main cracks increase significantly. The fatigue times of the maximum horizontal strain in the whole field gradually decrease. Air voids and the average volume of meso-void visibly increase. The microcracks of cement-emulsified asphalt mortar constantly emerge at the interface. The serious damage of the “three-dimensional network structure” is the fundamental reason for the performance decay of EACRM in cold regions. The performance damage of EACRM in cold regions is aggravated by water seeping into voids from cracks. Eventually, EACRM shows serious freeze-thaw inflicted damage.

Funder

National Natural Science Foundation of China

Publisher

Riga Technical University

Subject

Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3