Analysis of Deck Slab of Reinforced Concrete Gerber-Girder Bridge Widened by Addition of Continuous Steel-Concrete Composite Girders

Author:

Siekierski WojciechORCID

Abstract

Many Gerber-girder bridges have become obsolete in terms of deck width and load carrying capacity. If bridge replacement is not necessary, additional girders are installed. Sometimes, due to erection convenience, the added girders do not replicate the static scheme of the refurbished structure. Such an arrangement requires special attention to preserve structural durability. An example of the inappropriate arrangement of the widening of a Reinforced Concrete Gerber-girder road bridge is presented together with an alternative concept of refurbishment based on the addition of the continuous steel-concrete girders as the outermost ones. The added deck slab connects the added and the existing parts of the structure. Attention is drawn the static analysis of the added deck slab and the influence of the added outermost girders that do not replicate the static scheme of the existing ones. Due to different static schemes of the existing and the added girders, the traditional method of the deck slab analysis is inappropriate. The Finite Element 3D model is to be applied to access bending moments in the deck slab spans correctly. It is shown that: a) the analysis of the distribution of the bending moments in the existing and the added slab spans, especially near Gerber-hinges, should be based on the Finite Element 3D modelling; b) the analysis should consider live loads acting on the whole width of the Gerber-hinge span; c) the bending moment distribution in the widened deck slab is sensitive to the distance to the Gerber hinge.

Publisher

Riga Technical University

Subject

Building and Construction,Civil and Structural Engineering

Reference15 articles.

1. Bota, A., & Bota, D. (2016). What means external prestressing for an old Gerber structure. Procedia engineering, 156, 48-53. https://doi.org/10.1016/j.proeng.2016.08.266

2. Croci, G., Santoro, V. M., & Macri, F. (1995). Structural rehabilitation of a reinforced concrete and a prestressed concrete bridge. IABSE reports, 73/1/73/2, 77–82.

3. Cusens, A. R., & Pama, R. P. (1975). Bridge deck analysis.

4. Fu, C. C., & Wang, S. (2015). Computational analysis and design of bridge structures. CRC Press.

5. Gode, G., & Paeglitis, A. (2014). Concrete bridge deterioration caused by de-icing salts in high traffic volume road environment in Latvia. Baltic Journal of Road and Bridge Engineering, 9(2), 200–207. https://doi.org/10.3846/bjrbe.2014.25

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3