Author:
Wang Yongbao,Zhao Renda,Jia Yi,Liao Ping
Abstract
This paper continues the previous study on clarifying the time-dependent behaviour of Beipanjiang Bridge ‒ a reinforced concrete arch bridge with concrete-filled steel tubular stiffened skeleton. The obtained prediction models and the Finite Element Models were used to simulate the long-term behaviour and stress redistribution of the concrete arch bridge. Three-dimensional beam elements simulated the stiffened skeleton and surrounding concrete. Then, a parameters study was carried out to analyse the time-dependent behaviour of the arch bridge influenced by different concrete creep and shrinkage models. The simulation results demonstrate that concrete creep and shrinkage have a significant influence on the time-dependent behaviour of the concrete arch bridge. After the bridge completion, the Comite Euro-International du Beton mean deviation of displacements obtained by 1990 CEBFIP Model Code: Design Code model and fib Model Code for Concrete Structures 2010 model are 3.4%, 31.9% larger than the results predicted by the modified fib Model Code for Concrete Structures 2010 model. The stresses between the steel and the concrete redistribute with time because of the concrete long-term effect. The steel will yield if the fib Model Code for Concrete Structures 2010 model is used in the analysis. The stresses in a different part of the surrounding concrete are non-uniformly distributed.
Publisher
Riga Technical University
Subject
Building and Construction,Civil and Structural Engineering
Reference19 articles.
1. ACI209 R-92 Prediction of Creep, Shrinkage and Temperature Effects in Concrete Structures.
2. Al-Manaseer, A., & Prado, A. (2015). Statistical comparisons of creep and shrinkage prediction models using RILEM and NU-ITI databases. ACI Materials Journal, 112(1), 125. https://doi.org/10.14359/51686982
3. Bažant, Z.P. & Murphy, W. P. (1995). Creep and Shrinkage Prediction Model for Analysis and Design of Concrete Structures-Model B3. Materials and Structures 28:357‒365. https://doi.org/10.1007/BF02473152.
4. Bažant, Z. P., Hubler, M. H., & Yu, Q. (2011). Excessive creep deflections: An awakening. Concrete international, 33(8), 44-46.
5. Bažant, Z. P., Yu, Q., & Li, G. H. (2012). Excessive long-time deflections of prestressed box girders. I: Record-span bridge in Palau and other paradigms. Journal of Structural Engineering, 138(6), 676-686. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000487
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献