Smart City Street Lighting System Quality and Control Issues To Increase Energy Efficiency and Safety

Author:

Avotins Ansis1ORCID,Adrian Leslie Robert1ORCID,Porins Ricards1,Apse-Apsitis Peteris2,Ribickis Leonids1ORCID

Affiliation:

1. Institute of Industrial Electronics and Electrical Engineering, Riga Technical University, Riga, Latvia

2. Department of Industrial Electronics and Electrical Technologies, Riga Technical University, Riga, Latvia

Abstract

According to standards, the lighting system is one of the key elements to provide safety on city roads, defined by quality parameters. LED technology and movement detection sensor interaction bring about new regulation techniques, creating an energy-efficient smart LED lighting system concept. This paper reveals extensive comparative data analysis of Dialux simulation results before the project implementation phase and in-situ quality parameter measurements for various street profiles and LED luminary power types. After the project implementation phase, more than 1000 measurement points are reached. Further, energy efficiency increase issues in smart lighting systems are described in terms of LED luminary dimming profile analysis and future dynamic control application modes. The first findings clearly show that in most cases light output in simulation results is lower than in real situations; therefore, LED luminary power can be decreased, allowing for higher energy savings in first luminary maintenance years, keeping the same defined ME class or safety level. Let us suppose that the traffic intensity data are obtained from smart system sensors. In that case, the ME class can be dynamically selected during different night times, thus increasing safety and providing extra energy savings using the same system elements, as well as leading to better ROI values.

Publisher

Riga Technical University

Subject

Building and Construction,Civil and Structural Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3